Expression and immunological cross-reactivity of LALP3, a novel astacin-like metalloprotease from brown spider (Loxosceles intermedia) venom
Loxosceles spiders' venom comprises a complex mixture of biologically active toxins, mostly consisting of low molecular mass components (2–40 kDa). Amongst, isoforms of astacin-like metalloproteases were identified through transcriptome and proteome analyses. Only LALP1 (Loxosceles Astacin-Like...
Saved in:
Published in: | Biochimie Vol. 128-129; pp. 8 - 19 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
France
Elsevier B.V
01-09-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Loxosceles spiders' venom comprises a complex mixture of biologically active toxins, mostly consisting of low molecular mass components (2–40 kDa). Amongst, isoforms of astacin-like metalloproteases were identified through transcriptome and proteome analyses. Only LALP1 (Loxosceles Astacin-Like protease 1) has been characterized. Herein, we characterized LALP3 as a novel recombinant astacin-like metalloprotease isoform from Loxosceles intermedia venom. LALP3 cDNA was cloned in pET-SUMO vector, and its soluble heterologous expression was performed using a SUMO tag added to LALP3 to achieve solubility in Escherichia coli SHuffle T7 Express LysY cells, which express the disulfide bond isomerase DsbC. Protein purification was conducted by Ni-NTA Agarose resin and assayed for purity by SDS-PAGE under reducing conditions. Immunoblotting analyses were performed with specific antibodies recognizing LALP1 and whole venom. Western blotting showed linear epitopes from recombinant LALP3 that cross-reacted with LALP1, and dot blotting revealed conformational epitopes with native venom astacins. Mass spectrometry analysis revealed that the recombinant expressed protein is an astacin-like metalloprotease from L. intermedia venom. Furthermore, molecular modeling of LALP3 revealed that this isoform contains the zinc binding and Met-turn motifs, forming the active site, as has been observed in astacins. These data confirmed that LALP3, which was successfully obtained by heterologous expression using a prokaryote system, is a new astacin-like metalloprotease isoform present in L. intermedia venom. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0300-9084 1638-6183 |
DOI: | 10.1016/j.biochi.2016.06.003 |