Study of the Influence of TiB Content and Temperature in the Properties of In Situ Titanium Matrix Composites

This work focuses on the study of the microstructure, hardening, and stiffening effect caused by the secondary phases formed in titanium matrices. These secondary phases originated from reactions between the matrix and boron particles added in the starting mixtures of the composites. Not only was th...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) Vol. 7; no. 11; p. 457
Main Authors: Arévalo, Cristina, Montealegre-Melendez, Isabel, Pérez-Soriano, Eva, Ariza, Enrique, Kitzmantel, Michael, Neubauer, Erich
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-11-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work focuses on the study of the microstructure, hardening, and stiffening effect caused by the secondary phases formed in titanium matrices. These secondary phases originated from reactions between the matrix and boron particles added in the starting mixtures of the composites. Not only was the composite composition studied as an influencing factor in the behaviour of the composites, but also different operational temperatures. Three volume percentages of boron content were tested (0.9 vol %, 2.5 vol %, and 5 vol % of amorphous boron). The manufacturing process used to produce the composites was inductive hot pressing, which operational temperatures were between 1000 and 1300 °C. Specimens showed optimal densification. Moreover, microstructural studies revealed the formation of TiB in various shapes and proportions. Mechanical testing confirmed that the secondary phases had a positive influence on properties of the composites. In general, adding boron particles increased the hardness and stiffness of the composites; however rising temperatures resulted in greater increases in stiffness than in hardness.
ISSN:2075-4701
2075-4701
DOI:10.3390/met7110457