An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis

For oenological products, most of the intrinsic and extrinsic drivers of perceived quality are associated with specific aromatic profiles. Aromatic diversity has been recognized as a central element in perceived quality as it is able to transmit the complex interactions between grape variety, geogra...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 7; p. 4609
Main Authors: Tesoro, Carmen, Acquavia, Maria Assunta, Giussani, Barbara, Bianco, Giuliana, Pascale, Raffaella, Lelario, Filomena, Ciriello, Rosanna, Capece, Angela, Pietrafesa, Rocchina, Siesto, Gabriella, Di Capua, Angela
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-04-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For oenological products, most of the intrinsic and extrinsic drivers of perceived quality are associated with specific aromatic profiles. Aromatic diversity has been recognized as a central element in perceived quality as it is able to transmit the complex interactions between grape variety, geographical characteristics, and viticultural and winemaking practices, including the fermentative process. A comprehensive characterization of flavour compounds by headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometric analysis is often needed in order to ascertain the quality of wine. HS-SPME requires a proper optimization that can be achieved through an adequate experimental design. Here, a HS-SPME/GC-MS based method was developed to investigate the volatile compounds of wine samples obtained by laboratory-scale fermentations. This was performed by inoculating a commercial Saccharomyces cerevisiae strain, which is used both as single starter and as mixed starter, with an indigenous Hanseniaspora osmophila strain. The experimental conditions of HS-SPME (extraction temperature and time) were optimized by applying a face-centred composite experimental design. Up to 95% of the total variance was explained by the proposed model. The optimized method allowed us to confirm the usefulness of combining the inoculation of grapes with selected yeast strains in co-culture situations in order to improve the wine bouquet.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13074609