Signalling through the MHC class II cytoplasmic domain is required for antigen presentation and induces B7 expression

Class II major histocompatibility complex (MHC) molecules function as antigen-presenting elements as well as signal transducers on B lymphocytes. We previously reported that a B lymphoma cell transfectant, 5C2, expressing genetically engineered I-Ak molecules with truncated cytoplasmic domains was s...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 360; no. 6401; pp. 266 - 268
Main Authors: Nabavi, N, Freeman, G. J, Gault, A, Godfrey, D, Nadler, L. M, Glimcher, L. H
Format: Journal Article
Language:English
Published: London Nature Publishing 19-11-1992
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Class II major histocompatibility complex (MHC) molecules function as antigen-presenting elements as well as signal transducers on B lymphocytes. We previously reported that a B lymphoma cell transfectant, 5C2, expressing genetically engineered I-Ak molecules with truncated cytoplasmic domains was severely impaired in both antigen presentation and in anti-Ia-induced intracytoplasmic signalling. These two functions could be restored by preculturing 5C2 cells with cyclic AMP analogues. Here we demonstrate that impaired signal transduction by truncated class II molecules results in a deficiency in induction of the newly defined B-cell accessory molecule B7 (ref. 8), which can be reversed by restoration of B7 expression. These data imply that contact of the T-cell antigen receptor with MHC/antigen ligand results in signal transmission through the class II cytoplasmic domain. This signal, which can be mimicked by dibutyryl cAMP, induces expression of B7, resulting in effective antigen presentation. The fact that crosslinking of surface class II MHC also induces B7 expression on normal resting human B cells supports this contention.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
DOI:10.1038/360266a0