Modelling Water Colour Characteristics in an Optically Complex Nearshore Environment in the Baltic Sea; Quantitative Interpretation of the Forel-Ule Scale and Algorithms for the Remote Estimation of Seawater Composition
The paper presents the modelling results of selected characteristics of water-leaving light in an optically complex nearshore marine environment. The modelled quantities include the spectra of the remote-sensing reflectance Rrs(λ) and the hue angle α, which quantitatively describes the colour of wat...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 12; no. 17; p. 2852 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents the modelling results of selected characteristics of water-leaving light in an optically complex nearshore marine environment. The modelled quantities include the spectra of the remote-sensing reflectance Rrs(λ) and the hue angle α, which quantitatively describes the colour of water visible to the unaided human eye. Based on the latter value, it is also possible to match water-leaving light spectra to classes on the traditional Forel-Ule water colour scale. We applied a simple model that assumes that seawater is made up of chemically pure water and three types of additional optically significant components: particulate organic matter (POM) (which includes living phytoplankton), particulate inorganic matter (PIM), and chromophoric dissolved organic matter (CDOM). We also utilised the specific inherent optical properties (SIOPs) of these components, determined from measurements made at a nearshore location on the Gulf of Gdańsk. To a first approximation, the simple model assumes that the Rrs spectrum can be described by a simple function of the ratio of the light backscattering coefficient to the sum of the light absorption and backscattering coefficients (u = bb/(a + bb)). The model calculations illustrate the complexity of possible relationships between the seawater composition and the optical characteristics of an environment in which the concentrations of individual optically significant components may be mutually uncorrelated. The calculations permit a quantitative interpretation of the Forel-Ule scale. The following parameters were determined for the several classes on this scale: typical spectral shapes of the u ratio, possible ranges of the total light absorption coefficient in the blue band (a(440)), as well as upper limits for concentrations of total and organic and inorganic fractions of suspended particles (SPM, POM and PIM concentrations). The paper gives examples of practical algorithms that, based on a given Rrs spectrum or some of its features, and using lookup tables containing the modelling results, enable to estimate the approximate composition of seawater. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs12172852 |