Small Hydropower Plants with Variable Speed Operation—An Optimal Operation Curve Determination

In recent times, much attention has been paid to small hydropower plants (SHPs) with variable speed operation and different control techniques. Control complexity in SHPs is mainly caused by specific steady-state features of the water turbine, the long time constants of the hydraulic system and sign...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 13; no. 23; p. 6230
Main Authors: Borkowski, Dariusz, Majdak, Marek
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent times, much attention has been paid to small hydropower plants (SHPs) with variable speed operation and different control techniques. Control complexity in SHPs is mainly caused by specific steady-state features of the water turbine, the long time constants of the hydraulic system and significant seasonal and/or aging-related deterioration in the system performance. This paper presents the most important features of the turbine model from a control point of view. It classifies control techniques for SHPs with variable speed operation in terms of the turbine type and SHP function (run-of-the-river and reservoir). Furthermore, various control methods are analysed taking into account the complexity of the method, dynamics, adaptability and applicability. The novelty of this study is the proposal of a simple, universal analytical formula, which, based on the basic dimensions of the turbine, determines the optimal operating curve. The proposed formula is verified on a real SHP 150 kW by comparison with measurements in the form of operational characteristics. The analysis of the annual energy production confirms the effectiveness of the approximation precision, yielding only 1% production losses, and shows an advantage of variable speed over constant speed in annual energy production of 16%.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13236230