Assessing Rapid Variability in Atmospheric Apparent Optical Depth with an Array Spectrometer System
A method for determining rapid variations in atmospheric optical depth is proposed. The method is based upon computation of the ratio between close-time spectral measurements of solar direct flux. Use of the ratio avoids the need for absolute calibration of the instruments and minimizes the effects...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 12; no. 18; p. 2917 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method for determining rapid variations in atmospheric optical depth is proposed. The method is based upon computation of the ratio between close-time spectral measurements of solar direct flux. Use of the ratio avoids the need for absolute calibration of the instruments and minimizes the effects of changes in instrumental conditions (such as temperature or mechanical adjustments) and in air mass. The technique has been applied to some campaigns of measurement for sky conditions ranging from clear skies to scattered-to-broken cloudiness, performed at high frequency (~1Hz) with a system of three array spectrometers, capable of performing very rapid spectral acquisitions, in the 400 to 1700 nm band, thus covering the visible and extending to the near-infrared spectral ranges. Results demonstrate the capacity of this instrumentation and method to detect rapid variation of optical depth, as well as rapid changes in its spectral pattern. The optical depth variability depends on the particular state of the sky and is connected to particle condensation and evaporation processes and to the changes in water vapor content in the transition region between cloud-free and cloudy regions. Thus, the method is suitable for analyzing rapid processes involving particles, either aerosol or cloud droplets, and water vapor, in the cloud boundaries. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs12182917 |