Impact of Cubic Symmetry on Optical Activity of Dielectric 8-srs Networks

Photonic crystals are engineered structures able to control the propagation and properties of light. Due to this ability, they can be fashioned into optical components for advanced light manipulation and sensing. For these applications, a particularly interesting case study is the gyroid srs-network...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 8; no. 11; p. 2104
Main Authors: Goi, Elena, Cumming, Benjamin, Gu, Min
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-11-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photonic crystals are engineered structures able to control the propagation and properties of light. Due to this ability, they can be fashioned into optical components for advanced light manipulation and sensing. For these applications, a particularly interesting case study is the gyroid srs-network, a three-dimensional periodic network with both cubic symmetry and chirality. In this work we present the fabrication and characterization of three-dimensional cubically symmetric 8-srs photonic crystals derived from combination of eight individual gyroid srs-networks. We numerically and experimentally investigate optical properties of these photonic crystals and study in particular, the impact of cubic symmetry on transmission and optical activity (OA). Gyroid photonic crystals fabricated in this work can lead to the development of smaller, cheaper, and more efficient optical components with functionalities that go beyond the concept of lenses.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8112104