Effects of Unconventional Additives in Gasoline on the Performance of a Vehicle

In order to meet stricter emissions regulations and fuel consumption regulations, the upgrading of fuel quality has become one of the most important trends in the development of internal combustion engines. In this article, 89 # gasoline (G89) that is available on the Chinese market was selected as...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 15; no. 5; p. 1605
Main Authors: Lin, Mao, Zhang, Xiaoteng, Wen, Mingsheng, Zhang, Chuanqi, Kong, Xiangen, Jin, Zhiyang, Zheng, Zunqing, Liu, Haifeng
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-03-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to meet stricter emissions regulations and fuel consumption regulations, the upgrading of fuel quality has become one of the most important trends in the development of internal combustion engines. In this article, 89 # gasoline (G89) that is available on the Chinese market was selected as the base fuel, and five unconventional additives, ethyl tert-butyl ether (ETBE), N-Methylaniline, sec-butyl acetate, p-methylphenol and isobutanol, were added to the base fuel and named as G89-1, G89-2, G89-3, G89-4 and G89-5, respectively. The effects of these unconventional additives on a PFI vehicle were investigated. The test was carried out on a chassis dynamometer and the NEDC cycle was adopted to simulate driving conditions. The results show that, in terms of fuel consumption, G89-3 showed the best performance for decreasing fuel consumption. In terms of gaseous emissions, G89-4 decreased all four gaseous emissions, CO2, CO, THC and NOx, to a greater extent, which indicates that blending p-methylphenol into gasoline has a better potential for the vehicle to achieve cleaner emissions. In terms of acceleration performance, the five additives all shortened the acceleration time. The effects of the different additives on shortening acceleration time are basically consistent with the RON of the fuel.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15051605