Evaluation of Incident Light Sensors on Unmanned Aircraft for Calculation of Spectral Reflectance
Including incident light sensors (ILS) with multispectral sensors is an important development for agricultural remote sensing because spectral reflectances are necessary for accurate determination of plant biophysical variables such as leaf area index and leaf chlorophyll content. Effects of differe...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 11; no. 22; p. 2622 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-11-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Including incident light sensors (ILS) with multispectral sensors is an important development for agricultural remote sensing because spectral reflectances are necessary for accurate determination of plant biophysical variables such as leaf area index and leaf chlorophyll content. Effects of different aircraft flight conditions on accuracy of surface reflectances retrieved using an ILS are not known. The objectives of this study were to assess the effects of ILS orientation with respect to sun and aircraft altitude. A Tetracam Miniature Multiple Camera Array (Mini-MCA) was mounted on a fixed-wing unmanned aircraft system (UAS) with the ILS mounted on top of the aircraft’s fuselage. On two dates the aircraft flew over six 50-ha agricultural fields with center-pivot irrigation at three different altitudes (450, 650 and 1800 m above ground level (AGL)). Ground reflectances were estimated using atmospherically corrected Landsat 8 Operational Land Imager data acquired at or near the time of the aircraft overflights. Because the aircraft had a positive pitch during flight, the ILS pointed opposite to the flight direction. The first date had flight lines closely oriented towards and away from the sun. The second date had flight lines oriented perpendicularly to the solar azimuth. On the first date, red and near-infrared (NIR) reflectances were significantly higher when the ILS was oriented away from the sun, whereas ILS orientation had little effect on the second date. For both dates, red and near-infrared reflectances were significantly greater at 450 m compared to 1800 m. Both the effects of ILS orientation and flight altitude are correctable during image processing because the physical basis is well known. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11222622 |