Identification of the Roles of Climate Factors, Engineering Construction, and Agricultural Practices in Vegetation Dynamics in the Lhasa River Basin, Tibetan Plateau

Understanding vegetation dynamics is necessary to address potential ecological threats and develop sustainable ecosystem management at high altitudes. In this study, we revealed the spatiotemporal characteristics of vegetation growth in the Lhasa River Basin using net primary productivity (NPP) and...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 11; p. 1883
Main Authors: Li, Dan, Luo, Hongying, Hu, Tiesong, Shao, Dongguo, Cui, Yuanlai, Khan, Shahbaz, Luo, Yufeng
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding vegetation dynamics is necessary to address potential ecological threats and develop sustainable ecosystem management at high altitudes. In this study, we revealed the spatiotemporal characteristics of vegetation growth in the Lhasa River Basin using net primary productivity (NPP) and normalized difference vegetation index (NDVI) during the period of 2000–2005. The roles of climatic factors and specific anthropogenic activities in vegetation dynamics were also identified, including positive or negative effects and the degree of impact. The results indicated that the interannual series of NPP and NDVI in the whole basin both had a continuous increasing trend from 102 to 128 gC m−2 yr−1 and from 0.417 to 0.489 (p < 0.05), respectively. The strongest advanced trends (>2 gC m−2 yr−1 or >0.005 yr−1) were detected in mainly the southeastern and northeastern regions. Vegetation dynamics were not detected in 10% of the basin. Only 20% of vegetation dynamics were driven by climatic conditions, and precipitation was the controlling climatic factor determining vegetation growth. Accordingly, anthropogenic activities made a great difference in vegetation coverage, accounting for about 70%. The construction of urbanization and reservoir led to vegetation degradation, but the farmland practices contributed the vegetation growth. Reservoir construction had an adverse impact on vegetation within 6 km of the river, and the direct damage to vegetation was within 1 km. The impacts of urbanization were more serious than that of reservoir construction. Urban sprawl had an adverse impact on vegetation within a 6 km distance from the surrounding river and resulted in the degradation of vegetation, especially within a 3 km range. Intensive fertilization and guaranteed irrigation improved the cropland ecosystem conditions, creating a favorable effect on the accumulation of crop organic matter in a range of 5 km, with an NPP trend value of 1.2 gC m−2 yr−1. The highly intensive grazing activity forced ecological environmental pressures such that the correlation between livestock numbers and vegetation growth trend was significantly linear negative.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12111883