Forces in Axial Flux Magnetic Gears with Integer and Fractional Gear Ratios
This paper presents a comparison of two variants of an axial flux magnetic gear (AFMG), namely, with integer and fractional gear ratios. Based on calculations derived with the use of three-dimensional numerical models, the torque characteristics of the analyzed AFMGs are computed and verified on a p...
Saved in:
Published in: | Energies (Basel) Vol. 14; no. 4; p. 855 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a comparison of two variants of an axial flux magnetic gear (AFMG), namely, with integer and fractional gear ratios. Based on calculations derived with the use of three-dimensional numerical models, the torque characteristics of the analyzed AFMGs are computed and verified on a physical model. The greatest emphasis is put on the detailed decomposition and analysis of local forces in modulator pole pieces (also used in the structural analysis) within the no-load and maximal load conditions. The authors also describe the unbalanced magnetic forces (UMF) in the axial and radial directions resulting from the construction of the considered AFMGs variants, and their possible effects in the context of the use of additive manufacturing (AM) in prototypes. The paper also proposes an effective method for limiting the axial strain by using the asymmetry of the air gaps, which slightly reduces the torque transmitted by AFMGs. Finally, a static strength analysis was presented that allows us to assess the effects of local forces in the form of modulator disc deformation for selected cases of air gap asymmetry. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14040855 |