Mapping Fire Susceptibility in the Brazilian Amazon Forests Using Multitemporal Remote Sensing and Time-Varying Unsupervised Anomaly Detection
The economic and environmental impacts of wildfires have leveraged the development of new technologies to prevent and reduce the occurrence of these devastating events. Indeed, identifying and mapping fire-susceptible areas arise as critical tasks, not only to pave the way for rapid responses to att...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 14; no. 10; p. 2429 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-05-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The economic and environmental impacts of wildfires have leveraged the development of new technologies to prevent and reduce the occurrence of these devastating events. Indeed, identifying and mapping fire-susceptible areas arise as critical tasks, not only to pave the way for rapid responses to attenuate the fire spreading, but also to support emergency evacuation plans for the families affected by fire-related tragedies. Aiming at simultaneously mapping and measuring the risk of fires in the forest areas of Brazil’s Amazon, in this paper we combine multitemporal remote sensing, derivative spectral indices, and anomaly detection into a fully unsupervised methodology. We focus our analysis on recent forest fire events that occurred in the Brazilian Amazon by exploring multitemporal images acquired by both Landsat-8 Operational Land Imager and Modis sensors. We experimentally confirm that the current methodology is capable of predicting fire outbreaks immediately at posterior instants, which attests to the operational performance and applicability of our approach to preventing and mitigating the impact of fires in Brazilian forest regions. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14102429 |