Scalability tests of R-GMA-based grid job monitoring system for CMS Monte Carlo data production
High-energy physics experiments, such as the compact muon solenoid (CMS) at the large hadron collider (LHC), have large-scale data processing computing requirements. The grid has been chosen as the solution. One important challenge when using the grid for large-scale data processing is the ability t...
Saved in:
Published in: | IEEE transactions on nuclear science Vol. 51; no. 6; pp. 3026 - 3029 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-12-2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-energy physics experiments, such as the compact muon solenoid (CMS) at the large hadron collider (LHC), have large-scale data processing computing requirements. The grid has been chosen as the solution. One important challenge when using the grid for large-scale data processing is the ability to monitor the large numbers of jobs that are being executed simultaneously at multiple remote sites. The relational grid monitoring architecture (R-GMA) is a monitoring and information management service for distributed resources based on the GMA of the Global Grid Forum. We report on the first measurements of R-GMA as part of a monitoring architecture to be used for batch submission of multiple Monte Carlo simulation jobs running on a CMS-specific LHC computing grid test bed. Monitoring information was transferred in real time from remote execution nodes back to the submitting host and stored in a database. In scalability tests, the job submission rates supported by successive releases of R-GMA improved significantly, approaching that expected in full-scale production. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2004.839094 |