A Stacking Ensemble for Network Intrusion Detection Using Heterogeneous Datasets

The problem of network intrusion detection poses innumerable challenges to the research community, industry, and commercial sectors. Moreover, the persistent attacks occurring on the cyber-threat landscape compel researchers to devise robust approaches in order to address the recurring problem. Give...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks Vol. 2020; no. 2020; pp. 1 - 9
Main Authors: Rajagopal, Smitha, Hareesha, Katiganere Siddaramappa, Kundapur, Poornima Panduranga
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
Hindawi Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of network intrusion detection poses innumerable challenges to the research community, industry, and commercial sectors. Moreover, the persistent attacks occurring on the cyber-threat landscape compel researchers to devise robust approaches in order to address the recurring problem. Given the presence of massive network traffic, conventional machine learning algorithms when applied in the field of network intrusion detection are quite ineffective. Instead, a hybrid multimodel solution when sought improves performance thereby producing reliable predictions. Therefore, this article presents an ensemble model using metaclassification approach enabled by stacked generalization. Two contemporary as well as heterogeneous datasets, namely, UNSW NB-15, a packet-based dataset, and UGR’16, a flow-based dataset, that were captured in emulated as well as real network traffic environment, respectively, were used for experimentation. Empirical results indicate that the proposed stacking ensemble is capable of generating superior predictions with respect to a real-time dataset (97% accuracy) than an emulated one (94% accuracy).
ISSN:1939-0114
1939-0122
DOI:10.1155/2020/4586875