Extinction-related Angström exponent characterization of submicrometric volume fraction in atmospheric aerosol particles

The AEAOD– ΔAEAOD grid proposed by Gobbi et al. (2007) is a graphical method used to visually represent the spectral characterization of aerosol optical depth (AOD), i.e. Angström exponent (AE) and its curvature, in order to infer the fine mode contribution (η) to the total AOD and the size of the f...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric research Vol. 228; pp. 270 - 280
Main Authors: Quirantes, A., Guerrero-Rascado, J.L., Pérez-Ramírez, D., Foyo-Moreno, I., Ortiz-Amezcua, P., Benavent-Oltra, J.A., Lyamani, H., Titos, G., Bravo-Aranda, J.A., Cazorla, A., Valenzuela, A., Casquero-Vera, J.A., Bedoya-Velásquez, A.E., Alados-Arboledas, L., Olmo, F.J.
Format: Journal Article
Language:English
Published: Elsevier B.V 01-11-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The AEAOD– ΔAEAOD grid proposed by Gobbi et al. (2007) is a graphical method used to visually represent the spectral characterization of aerosol optical depth (AOD), i.e. Angström exponent (AE) and its curvature, in order to infer the fine mode contribution (η) to the total AOD and the size of the fine mode aerosol particles. Perrone et al. (2014) applied this method for the wavelengths widely used in lidar measurements. However, in neither case does the method allow for a direct relationship between η and the fine mode fraction contribution to the total aerosol population. Some discussions are made regarding the effect of shape and composition to the classical AE-ΔAE plot. The potential use of particle backscatter measurements, widely used in aerosol characterization methods together with extinction measurements, is also discussed in the AE-ΔAE grid context. A modification is proposed that yields the submicron contribution to the total volume concentration by using particle extinction data, and a comparison to experimental measurements is made. Our results indicate that the use of a modified AE-ΔAE grid plot to directly obtain submicrometric and micrometric mode fraction to the total aerosol population is feasible if a volume-based bimodal particle size distribution is used instead of a number-based one. •AEAOD– ΔAEAOD graphical grid plots (Gobbi) yield fine-mode contribution to AOD.•A modified Gobbi plot is proposed that links fine-mode volume contribution to AOD.•The use of particle backscatter measurements is discussed in the AE-ΔAE grid context.
ISSN:0169-8095
1873-2895
DOI:10.1016/j.atmosres.2019.06.009