Exposure to non-persistent pesticides and thyroid function: A systematic review of epidemiological evidence

Numerous pesticides are recognized for their endocrine-disrupting properties. Non-persistent pesticides such as organophosphates, dithiocarbamates and pyrethroids may interfere with thyroid function as suggested by animal studies. However, the influence of chronic exposure to these compounds on thyr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hygiene and environmental health Vol. 219; no. 6; pp. 481 - 497
Main Authors: Campos, Élida, Freire, Carmen
Format: Journal Article
Language:English
Published: Germany Elsevier GmbH 01-08-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerous pesticides are recognized for their endocrine-disrupting properties. Non-persistent pesticides such as organophosphates, dithiocarbamates and pyrethroids may interfere with thyroid function as suggested by animal studies. However, the influence of chronic exposure to these compounds on thyroidal functions in humans remains to be determined. The present study aimed to review epidemiological evidence for an association between exposure to non-persistent pesticides and circulating levels of thyroid hormones (thyroxin [T4] and triiodothyronine [T3]) and thyroid-stimulating hormone (TSH). A systematic review was conducted using MEDLINE, SCOPUS and Virtual Health Library (BVS) databases. Articles were limited to original studies and reports published in English, Portuguese or Spanish. Nineteen epidemiological studies were identified, 17 of which were cross-sectional, 14 were of occupationally exposed workers and 11 used exposure biomarkers. Fungicides and organophosphates (OP) insecticides were the most studied pesticides. Although methodological heterogeneity between studies was noted, particularly regarding study design, exposure assessment, and control of confounding, most of them showed associations with changes in T3 and T4, and/or TSH levels, while results from a few of these are consistent with experimental data supporting the findings that non-persistent pesticide exposure exerts hypothyroid-like effects. However, reporting quality was moderate to poor in 50% of the studies, particularly regarding method of selection of participants and discussion of external validity. Overall, current knowledge regarding the impact of non-persistent pesticides on human thyroid function is still limited. Given the widespread use of pesticides, future research should assess effects of exposure to currently-used pesticides in cohort studies combining comprehensive questionnaire-based assessment and biomarkers. Investigators need to pay particular attention to exposure during critical windows of brain development and exposure in agricultural populations.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-4
ObjectType-Undefined-1
content type line 23
ObjectType-Review-2
ObjectType-Article-3
ISSN:1438-4639
1618-131X
DOI:10.1016/j.ijheh.2016.05.006