Universality class of criticality in the restricted primitive model electrolyte
The 1:1 equisized hard-sphere electrolyte or restricted primitive model has been simulated via grand-canonical fine-discretization Monte Carlo. Newly devised unbiased finite-size extrapolation methods using loci in the temperature-density or (T,rho) plane of isothermal rho(2-k) vs pressure inflectio...
Saved in:
Published in: | Physical review letters Vol. 88; no. 18; p. 185701 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
06-05-2002
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 1:1 equisized hard-sphere electrolyte or restricted primitive model has been simulated via grand-canonical fine-discretization Monte Carlo. Newly devised unbiased finite-size extrapolation methods using loci in the temperature-density or (T,rho) plane of isothermal rho(2-k) vs pressure inflections, of Q identical with<m(2)>(2)/<m(4)> maxima, and of canonical and C(V) criticality, yield estimates of (T(c),rho(c)) to +/-(0.04,3)%. Extrapolated exponents and Q ratio are (gamma,nu,Q(c)) = [1.24(3), 0.63(3); 0.624(2)], which support Ising (n = 1) behavior with (1.23(9), 0.630(3); 0.623(6)), but exclude classical, XY (n = 2), self-avoiding walk (n = 0), and n = 1 criticality with potentials varphi(r)>Phi/r(4.9) when r-->infinity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.88.185701 |