Quantum particles constrained on cylindrical surfaces with non-constant diameter

We present a theoretical formulation of the one-electron problem constrained on the surface of a cylindrical tubule with varying diameter. Because of the cylindrical symmetry, we may reduce the problem to a one-dimensional equation for each angular momentum quantum number m along the cylindrical axi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Physical Society of Japan Vol. 73; no. 11; pp. 3115 - 3120
Main Author: FUJITA, Nobuhisa
Format: Journal Article
Language:English
Published: Tokyo Institute of Pure and Applied Physics 01-11-2004
Physical Society of Japan
The Physical Society of Japan
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a theoretical formulation of the one-electron problem constrained on the surface of a cylindrical tubule with varying diameter. Because of the cylindrical symmetry, we may reduce the problem to a one-dimensional equation for each angular momentum quantum number m along the cylindrical axis. The geometrical properties of the surface determine the electronic structures through the geometry dependent term in the equation. Magnetic fields parallel to the axis can readily be incorporated. Our formulation is applied to simple examples such as the catenoid and the sinusoidal tubules. The existence of bound states as well as the band structures, which are induced geometrically, for these surfaces are shown. To show that the electronic structures can be altered significantly by applying a magnetic field, Aharonov-Bohm effects in these examples are demonstrated.
ISSN:0031-9015
1347-4073
DOI:10.1143/jpsj.73.3115