Volumetric tumor tracking from a single cone-beam X-ray projection image enabled by deep learning
Radiotherapy serves as a pivotal treatment modality for malignant tumors. However, the accuracy of radiotherapy is significantly compromised due to respiratory-induced fluctuations in the size, shape, and position of the tumor. To address this challenge, we introduce a deep learning-anchored, volume...
Saved in:
Published in: | Medical image analysis Vol. 91; p. 102998 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
01-01-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiotherapy serves as a pivotal treatment modality for malignant tumors. However, the accuracy of radiotherapy is significantly compromised due to respiratory-induced fluctuations in the size, shape, and position of the tumor. To address this challenge, we introduce a deep learning-anchored, volumetric tumor tracking methodology that employs single-angle X-ray projection images. This process involves aligning the intraoperative two-dimensional (2D) X-ray images with the pre-treatment three-dimensional (3D) planning Computed Tomography (CT) scans, enabling the extraction of the 3D tumor position and segmentation. Prior to therapy, a bespoke patient-specific tumor tracking model is formulated, leveraging a hybrid data augmentation, style correction, and registration network to create a mapping from single-angle 2D X-ray images to the corresponding 3D tumors. During the treatment phase, real-time X-ray images are fed into the trained model, producing the respective 3D tumor positioning. Rigorous validation conducted on actual patient lung data and lung phantoms attests to the high localization precision of our method at lowered radiation doses, thus heralding promising strides towards enhancing the precision of radiotherapy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1361-8415 1361-8423 |
DOI: | 10.1016/j.media.2023.102998 |