Analysis for the Implementation of Distributed Renewable Energy Generation Systems for Areas of High Vulnerability Due to Hillside Movements: Case Study of Marianza-Cuenca, Ecuador

This research presents a renewable energy system that takes advantage of the energy potential available in the territory. This study emerges as a relevant option to provide solutions to geological risk areas where there are buildings that, due to emergency situations at certain times of the year dur...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 17; no. 7; p. 1633
Main Authors: Córdova-González, Federico, García Meléndez, Eduardo, Ferrer Juliá, Montserrat, Icaza, Daniel
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-04-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research presents a renewable energy system that takes advantage of the energy potential available in the territory. This study emerges as a relevant option to provide solutions to geological risk areas where there are buildings that, due to emergency situations at certain times of the year during deep winter, are a target of danger and where its inhabitants would find it difficult to abandon their properties. The record of mass movements covering the city of Cuenca-Ecuador and part of the province has shown that the main triggering factor of this type of movement comprises the geological characteristics of tertiary formations characterized by lithological components that become unstable in the presence of water and due to their slopes being pronounced. Hybrid systems are effective solutions in distributed electricity generation, especially when it comes to helping people and their buildings in times of great need and the required electricity generation is basic. A hybrid photovoltaic, wind and hydrokinetic system has been designed that supplies electrical energy to a specific area on the opposite geographical side that is completely safe. The renewable energy system is connected to the public electricity grid available on site; however, in the event of an emergency the grid is disconnected for safety and only the hybrid system will work with the support of a battery backup system. In this study, the Homer Pro simulation tool was used and its results indicate that renewable systems that include PV, HKT and WT elements are economically viable, with a COE of USD 0.89/kWh.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17071633