ATP functions as a primary alarmin in allergen-induced type 2 immunity

Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells aft...

Full description

Saved in:
Bibliographic Details
Published in:American Journal of Physiology: Cell Physiology Vol. 325; no. 5; p. C1369
Main Authors: O'Grady, Scott M, Kita, Hirohito
Format: Journal Article
Language:English
Published: United States 01-11-2023
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
ISSN:1522-1563
DOI:10.1152/ajpcell.00370.2023