Effective wavelength scaling for optical antennas

In antenna theory, antenna parameters are directly related to the wavelength lambda of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 98; no. 26; p. 266802
Main Author: Novotny, Lukas
Format: Journal Article
Language:English
Published: United States 29-06-2007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In antenna theory, antenna parameters are directly related to the wavelength lambda of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing lambda by a linearly scaled effective wavelength lambda(eff)=n(1)+n(2)lambda/lambda(p), with lambda(p) being the plasma wavelength and n(1), n(2) being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii R << lambda. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.98.266802