Two-dimensional and three-dimensional computational studies of hydrodynamics in the transition from bubbling to circulating fluidised bed
This paper applies two-fluid modelling (TFM) to a two-dimensional and three-dimensional circulating fluidised bed (CFB). An energy minimisation multiscale (EMMS) based drag model is compared with a classical drag model, namely the Gidaspow model in the light of experimental data from the CFB. The ax...
Saved in:
Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 160; no. 1; pp. 239 - 248 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier B.V
15-05-2010
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper applies two-fluid modelling (TFM) to a two-dimensional and three-dimensional circulating fluidised bed (CFB). An energy minimisation multiscale (EMMS) based drag model is compared with a classical drag model, namely the Gidaspow model in the light of experimental data from the CFB. The axial particle velocities and the radial volume fraction at different heights are considered. The specularity coefficient responsible for the tangential solid velocities at the walls is varied to study the effect on the downflow of particles at the wall. The work is further extended to explore the effects of velocity variation on the flow distribution showing the transition from a bubbling to a fast fluidising regime. Furthermore, the diameters of the bubbles observed within the bubbling regime are compared with the Davidson’s bubble diameter model for a range of particle diameters. Varying the specularity coefficient showed that a free slip boundary condition underpredicted the downflow of particles at the wall and to add slight roughness to the wall gave a closer representation. The predictions for the 2D and 3D CFB axial velocities were in good agreement with the experimental data but the 2D results slightly overpredicted the core velocity. The transition from a bubbling to a fast fluidising regime as expected occurred once the inlet velocity exceeded the terminal velocity. The equivalent bubble diameter from the simulations agreed well with the calculated bubble diameter from the model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1385-8947 1873-3212 |
DOI: | 10.1016/j.cej.2010.02.032 |