A mortar-based frictional contact formulation for large deformations using Lagrange multipliers

In this work a Lagrange multiplier method is proposed to solve 2D Coulomb frictional contact problems in the context of large deformations. As the proposed formulation is based on the mortar method, the constraints are imposed in a weak integral sense along the contact surface. In order to compute t...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 198; no. 37; pp. 2860 - 2873
Main Authors: Tur, M., Fuenmayor, F.J., Wriggers, P.
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 01-08-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work a Lagrange multiplier method is proposed to solve 2D Coulomb frictional contact problems in the context of large deformations. As the proposed formulation is based on the mortar method, the constraints are imposed in a weak integral sense along the contact surface. In order to compute the contact integrals, we use a numerical integration based on the definition of the kinematical variables (gap, slip and their variations) at the quadrature points. The linearization of non-linear equations (virtual work and contact constraints) is developed in order to apply a Newton’s method. The examples show that the numerical integration still preserves the optimal rate of convergence of the finite element solution.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2009.04.007