Axisymmetric pressure boundary loading for finite deformation analysis using p-FEM

Follower loads, i.e. loads which depend on the boundary displacements by definition, frequently occur in finite deformation boundary-value problems. Restricting to axisymmetrical applications, we provide analytical and numerical solutions for a set of problems in compressible Neo-Hookean materials s...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 196; no. 7; pp. 1261 - 1277
Main Authors: Yosibash, Zohar, Hartmann, Stefan, Heisserer, Ulrich, Düster, Alexander, Rank, Ernst, Szanto, Mordechai
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-01-2007
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Follower loads, i.e. loads which depend on the boundary displacements by definition, frequently occur in finite deformation boundary-value problems. Restricting to axisymmetrical applications, we provide analytical and numerical solutions for a set of problems in compressible Neo-Hookean materials so to serve as benchmark problems for verifying the accuracy and efficiency of various FE methods for follower load applications. Thereafter, the weak formulation for the follower-load in 3-D domain is reduced to an axisymmetrical setting, and, subsequently, consistently linearized in the framework of p-FEMs, exploiting the blending function mapping techniques. The set of axisymmetric benchmark solutions is compared to numerical experiments, in which the results obtained by a p-FEM code are compared to these obtained by a state-of-the-art commercial h-FEM code and to the “exact” results. These demonstrate the efficiency and accuracy of p-FEMs when applied to problems in finite deformations with follower loads.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2006.09.006