The Effect of Submergence and Eutrophication on the Trait’s Performance of Wedelia Trilobata over Its Congener Native Wedelia Chinensis

Climate change and artificial disturbance may lead to increased submergence and eutrophication near a riparian zone and the shift of terrestrial plants into a riparian zone. In this study, the responses of terrestrial invasive Wedelia trilobata (WT) and congener native Wedelia chinensis (WC) plants...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) Vol. 12; no. 4; p. 934
Main Authors: Azeem, Ahmad, Sun, Jianfan, Javed, Qaiser, Jabran, Khawar, Du, Daolin
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-04-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Climate change and artificial disturbance may lead to increased submergence and eutrophication near a riparian zone and the shift of terrestrial plants into a riparian zone. In this study, the responses of terrestrial invasive Wedelia trilobata (WT) and congener native Wedelia chinensis (WC) plants were examined under submergence and eutrophication. A greenhouse experiment was conducted in which ramets of WT and WC were investigated under two levels of submergence (S1 and S2) and three levels of nutrients (N1, N2 and N3) along with two cultures (mono and mixed). Submergence (S) did not affect the morphological traits of both the species but nutrients (N), culture (C) and their interaction, along with submergence, had a significant effect on the morphological traits of both the species. The growth of WC under high submergence and high nutrients was decreased compared with low nutrients (N1, N2) but WT maintained its growth in monoculture. In mixed culture, low submergence (S1) and low nutrients (N1, N2) made WC more dominant but high submergence (S2) and high nutrients (N3) made WT more successful than WC due to its high phenotypic plasticity and negative effect of competition intensity. It was concluded that both species survive and grow well under submergence and eutrophication, but high submergence and eutrophication provide better conditions for WT to grow well.
ISSN:2073-4441
2073-4441
DOI:10.3390/w12040934