In vitro and in vivo studies of androst-4-ene-3,6,17-trione in horses by gas chromatography-mass spectrometry

This paper describes the application of gas chromatography–mass spectrometry (GC‐MS) for in vitro and in vivo studies of 6‐OXO in horses, with a special aim to identify the most appropriate target metabolite to be monitored for controlling the administration of 6‐OXO in racehorses. In vitro studies...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical chromatography Vol. 24; no. 7; pp. 744 - 751
Main Authors: Leung, Gary N. W., Tang, Francis P. W., Wan, Terence S. M., Wong, Colton H. F., Lam, Kenneth K. H., Stewart, Brian D.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01-07-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the application of gas chromatography–mass spectrometry (GC‐MS) for in vitro and in vivo studies of 6‐OXO in horses, with a special aim to identify the most appropriate target metabolite to be monitored for controlling the administration of 6‐OXO in racehorses. In vitro studies of 6‐OXO were performed using horse liver microsomes. The major biotransformation observed was reduction of one keto group at the C3 or C6 positions. Three in vitro metabolites, namely 6α‐hydroxyandrost‐4‐ene‐3,17‐dione (M1), 3α‐hydroxyandrost‐4‐ene‐6,17‐dione (M2a) and 3β‐hydroxyandrost‐4‐ene‐6,17‐dione (M2b) were identified. For the in vivo studies, two thoroughbred geldings were each administered orally with 500 mg of androst‐4‐ene‐3,6,17‐trione (5 capsules of 6‐OXO®) by stomach tubing. The results revealed that 6‐OXO was extensively metabolized. The three in vitro metabolites (M1, M2a and M2b) identified earlier were all detected in post‐administration urine samples. In addition, seven other urinary metabolites, derived from a further reduction of either one of the remaining keto groups or one of the remaining keto groups and the olefin group, were identified. These metabolites included 6α,17β‐dihydroxyandrost‐4‐en‐3‐one (M3a), 6,17‐dihydroxyandrost‐4‐en‐3‐one (M3b and M3c), 3β,6β‐dihydroxyandrost‐4‐en‐17‐one (M4a), 3,6‐dihydroxyandrost‐4‐en‐17‐one (M4b), 3,6‐dihydroxyandrostan‐17‐one (M5) and 3,17‐dihydroxyandrostan‐6‐one (M6). The longest detection time observed in urine was up to 46 h for the M6 metabolite. For blood samples, the peak 6‐OXO plasma concentration was observed 1 h post administration. Plasma 6‐OXO decreased rapidly and was not detectable 12 h post administration. Copyright © 2009 John Wiley & Sons, Ltd.
Bibliography:ArticleID:BMC1358
istex:F0DA7CAE4FE8DFED453AC53EAD3495460FEFB482
ark:/67375/WNG-6BSKXNGH-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0269-3879
1099-0801
DOI:10.1002/bmc.1358