Vibration Control of a Flexible Robotic Manipulator in the Presence of Input Deadzone

In this paper, a neural network (NN) controller is designed to suppress the vibration of a flexible robotic manipulator system with input deadzone. The NN aims to approximate the unknown robotic manipulator dynamics and eliminate the effects of input deadzone in the actuators. In order to describe t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 13; no. 1; pp. 48 - 59
Main Authors: He, Wei, Ouyang, Yuncheng, Hong, Jie
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-02-2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a neural network (NN) controller is designed to suppress the vibration of a flexible robotic manipulator system with input deadzone. The NN aims to approximate the unknown robotic manipulator dynamics and eliminate the effects of input deadzone in the actuators. In order to describe the system more accurately, the model of the flexible manipulator is constructed based on the lumping spring-mass method. Full state feedback NN control is proposed first and output feedback NN control with a high-gain observer is then devised to make the proposed control scheme more practical. The effect of input deadzone is approximated by a radial basis function neural network (RBFNN) and the unknown dynamics of the manipulator is approximated by another RBFNN. The proposed NN control is able to compensate for the estimated deadzone effect and track the desired trajectory. For the stability analysis, the Lyapunov's direct method is used to ensure uniform ultimate boundedness (UUB) of the closed-loop system. Simulations are given to verify the control performance of the NN controllers comparing with the proportional derivative (PD) controller. At last, the experiments are conducted on the Quanser platform to further prove the feasibility and control performance of the NN controllers.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2016.2608739