Returning to Nature for the Design of Sorptive Phases in Solid-Phase Microextraction

Green analytical chemistry principles aim to minimize the negative impact of analytical procedures in the environment, which can be considered both at close (to ensure the safety of the analysts) and global (to conserve our natural resources) levels. These principles suggest, among other guidelines,...

Full description

Saved in:
Bibliographic Details
Published in:Separations Vol. 7; no. 1; p. 2
Main Authors: Mafra, Gabriela, García-Valverde, María, Millán-Santiago, Jaime, Carasek, Eduardo, Lucena, Rafael, Cárdenas, Soledad
Format: Journal Article
Language:English
Published: MDPI AG 01-03-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Green analytical chemistry principles aim to minimize the negative impact of analytical procedures in the environment, which can be considered both at close (to ensure the safety of the analysts) and global (to conserve our natural resources) levels. These principles suggest, among other guidelines, the reduction/minimization of the sample treatment and the use of renewable sources when possible. The first aspect is largely fulfilled by microextraction, which is considered to be among the greenest sample treatment techniques. The second consideration is attainable if natural products are used as raw materials for the preparation of new extraction phases. This strategy is in line with the change in our production system, which is being gradually moved from a linear model (take–make–dispose) to a circular one (including reusing and recycling as key terms). This article reviews the potential of natural products as sorbents in extraction and microextraction techniques from the synergic perspectives of two research groups working on the topic. The article covers the use of unmodified natural materials and the modified ones (although the latter has a less green character) to draw a general picture of the usefulness of the materials.
ISSN:2297-8739
2297-8739
DOI:10.3390/separations7010002