Fabrication strategy of complicated Al2O3-Si3N4 functionally graded materials by stereolithography 3D printing
For multi-ceramic materials based on the stereolithography (SL) principle, a 3D printing strategy was developed, and then an Al2O3-Si3N4 functionally graded material (FGM) ceramic part was fabricated using this strategy. Six groups of mixtures, with a Si3N4 content gradient of 20 vol% and a certain...
Saved in:
Published in: | Journal of the European Ceramic Society Vol. 40; no. 15; pp. 5797 - 5809 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-12-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For multi-ceramic materials based on the stereolithography (SL) principle, a 3D printing strategy was developed, and then an Al2O3-Si3N4 functionally graded material (FGM) ceramic part was fabricated using this strategy. Six groups of mixtures, with a Si3N4 content gradient of 20 vol% and a certain bimodal particle size distribution, were prepared using UV-curable pastes. A modified formula was proposed to evaluate the relationship between the actual minimum voidage of mixtures and the viscosities of their corresponding pastes. The viscosity of each paste was controlled using the prediction formula and optimization of dispersants. To design theprinting layer thickness, a mathematical relationship was established between Si3N4 content and curing depth of paste. The Al2O3-Si3N4 green body without deformation was printed using optimized parameters such as a layer thickness of 40 μm and a paste viscosity of ∼13,000 mPa·s. Finally, using debinding and sintering, denseparts having a complicated shape were obtained. |
---|---|
ISSN: | 0955-2219 1873-619X |
DOI: | 10.1016/j.jeurceramsoc.2020.05.022 |