Lamotrigine: Design and synthesis of new multicomponent solid forms

In this work, a crystal engineering and thermodynamic based approach has been used aiming at contributing to a deeper knowledge of lamotrigine multicomponent solid forms. Two types of co-molecules have been chosen that can give rise to co-crystals with lamotrigine through different supramolecular he...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutical sciences Vol. 129; pp. 148 - 162
Main Authors: Évora, António O.L., Castro, Ricardo A.E., Maria, Teresa M.R., Ramos Silva, M., Canotilho, João, Eusébio, M. Ermelinda S.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-03-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a crystal engineering and thermodynamic based approach has been used aiming at contributing to a deeper knowledge of lamotrigine multicomponent solid forms. Two types of co-molecules have been chosen that can give rise to co-crystals with lamotrigine through different supramolecular heterosynthons: the xanthines, theophylline and caffeine, and the three isomeric pyridinecarboxamides. Association with diflunisal, which may result in a salt, was also investigated. Mechanochemistry, differential scanning calorimetry, thermogravimetry, X-ray powder and single crystal diffraction, infrared spectroscopy were the methods used. For all the systems, exploratory neat mechanochemistry experiments, carried out on lamotrigine + co-molecule binary mixtures of different compositions, were not successful in promoting association. From differential scanning calorimetry data and the binary solid-liquid phase diagrams, co-crystals/salts were identified as well as their respective stoichiometry, and a methodology of synthesis was established. For pyridinecarboxamides, molecular recognition is dependent on the position of the amide group in the pyridine ring: co-crystallization did not occur with picolinamide co-former. Both xanthines form co-crystals with lamotrigine, (1:1) with theophylline and (2:1) lamotrigine:caffeine. Additionally, the crystalline structure of a lamotrigine:theophylline 1:1 monohydrate was solved. The (1:1) lamotrigine:theophylline co-crystal converts to this monohydrate in accelerated stability tests. A (1:1) lamotrigine:diflunisal salt was identified, which proved to be stable in accelerated stability assays. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0928-0987
1879-0720
DOI:10.1016/j.ejps.2019.01.007