Characterisation of 40 mg/ml and 100 mg/ml tobramycin formulations for aerosol therapy with adult mechanical ventilation

Preservative-free tobramycin is commonly used as aerosolized therapy for ventilator associated pneumonia. The comparative delivery profile of the formulations of two different concentrations (100 mg/ml and 40 mg/ml) is unknown. This study aims to evaluate the aerosol characteristics of these tobramy...

Full description

Saved in:
Bibliographic Details
Published in:Pulmonary pharmacology & therapeutics Vol. 50; pp. 93 - 99
Main Authors: Dhanani, Jayesh A., Tang, Patrician, Wallis, Steven C., Parker, Suzanne L., Pandey, Preeti, Fraser, John F., Cohen, Jeremy, Barnett, Adrian, Roberts, Jason R., Chan, Hak-Kim
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-06-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Preservative-free tobramycin is commonly used as aerosolized therapy for ventilator associated pneumonia. The comparative delivery profile of the formulations of two different concentrations (100 mg/ml and 40 mg/ml) is unknown. This study aims to evaluate the aerosol characteristics of these tobramycin formulations in a simulated adult mechanical ventilation model. Simulated adult mechanical ventilation set up and optimal settings were used in the study. Inhaled mass study was performed using bacterial/viral filters at the tip of the tracheal tube and in the expiratory limb of circuit. Laser diffractometer was used for characterising particle size distribution. The physicochemical characteristics of the formulations were described and nebulization characteristics compared using two airways, an endotracheal tube (ET) and a tracheostomy tube (TT). For each type of tube, three internal tube diameters were studied, 7 mm, 8 mm and 9 mm. The lung dose was significantly higher for 100 mg/ml solution (mean 121.3 mg vs 41.3 mg). Viscosity was different (2.11cp vs 1.58cp) for 100 mg/ml vs 40 mg/ml respectively but surface tension was similar. For tobramycin 100 mg/ml vs 40 mg/ml, the volume median diameter (2.02 vs 1.9 μm) was comparable. The fine particle fraction (98.5 vs 85.4%) was higher and geometric standard deviation (1.36 vs 1.62 μm) was significantly lower for 100 mg/ml concentration. Nebulization duration was longer for 100 mg/ml solution (16.9 vs 10.1 min). The inhaled dose percent was similar (30%) but the exhaled dose was higher for 100 mg/ml solution (18.9 vs 10.4%). The differences in results were non-significant for type of tube or size except for a small but statistically significant reduction in inhaled mass with TT compared to ET (0.06%). Aerosolized tobramycin 100 mg/ml solution delivered higher lung dose compared to tobramycin 40 mg/ml solution. Tracheal tube type or size did not influence the aerosol characteristics and delivery parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-5539
1522-9629
DOI:10.1016/j.pupt.2018.04.006