Modeling and optimization of nebulizers' performance in non-invasive ventilation using different fill volumes: Comparative study between vibrating mesh and jet nebulizers
Substituting nebulisers by another, especially in non-invasive ventilation (NIV), involves many process-variables, e.g. nebulizer-type and fill-volume of respirable-dose, which might affect patient optimum-therapy. The aim of the present work was to use neural-networks and genetic-algorithms to deve...
Saved in:
Published in: | Pulmonary pharmacology & therapeutics Vol. 50; pp. 62 - 71 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-06-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Substituting nebulisers by another, especially in non-invasive ventilation (NIV), involves many process-variables, e.g. nebulizer-type and fill-volume of respirable-dose, which might affect patient optimum-therapy. The aim of the present work was to use neural-networks and genetic-algorithms to develop performance-models for two different nebulizers.
In-vitro, ex-vivo and in-vivo models were developed using input-variables including nebulizer-type [jet nebulizer (JN) and vibrating mesh nebulizer (VMN)] fill-volumes of respirable dose placed in the nebulization chamber with an output-variable e.g. average amount reaching NIV patient. Produced models were tested and validated to ensure effective predictivity and validity in further optimization of nebulization process.
Data-mining produced models showed excellent training, testing and validation correlation-coefficients. VMN showed high nebulization efficacy than JN. JN was affected more by increasing the fill-volume. The optimization process and contour-lines obtained for in-vivo model showed increase in pulmonary-bioavailability and systemic-absorption with VMN and 2 mL fill-volumes.
Modeling of aerosol-delivery by JN and VMN using different fill-volumes in NIV circuit was successful in demonstrating the effect of different variable on dose-delivery to NIV patient. Artificial neural networks model showed that VMN increased pulmonary-bioavailability and systemic-absorption compared to JN. VMN was less affected by fill-volume change compared to JN which should be diluted to increase delivery. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-5539 1522-9629 |
DOI: | 10.1016/j.pupt.2018.04.005 |