Modelling and experimental characterisation of a compressional adaptive magnetorheological elastomer isolator
This article proposes a simple physical-based model to describe and predict the performance of axially compressed magnetorheological elastomer cylinders used as vibration and shock absorbers. The model describes the magnetorheological elastomer macroscopic stiffness changes because of an externally...
Saved in:
Published in: | Journal of vibration and control Vol. 28; no. 21-22; pp. 3093 - 3107 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London, England
SAGE Publications
01-11-2022
SAGE PUBLICATIONS, INC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article proposes a simple physical-based model to describe and predict the performance of axially compressed magnetorheological elastomer cylinders used as vibration and shock absorbers. The model describes the magnetorheological elastomer macroscopic stiffness changes because of an externally applied magnetic field from a microscopic composite cell of silicone rubber and carbonyl iron particle. Despite neglecting the material hyperelasticity, anisotropy and adjacent magnetic interaction, the model describes effectively the effect of the magnetic field on the macroscopic modulus of elasticity. The changes in the mechanical properties with the induced magnetic field are measured on samples of different particle concentration based on volume percentage, that is, 10 and 30 percent concentration of iron particles in a silicone rubber matrix. The manufacturing process of the samples is detailed, as well as the experimental validation of the effective stiffness change under a magnetic field in terms of transmissibility and mobility testing. However, the prediction seems to be limited by the linear elastic material model. Predictions and measurements are compared, showing that the model is capable of predicting the tunability of the dynamic/shock absorber and that the proposed devices have a possible application in the reduction of mechanical vibrations. |
---|---|
ISSN: | 1077-5463 1741-2986 |
DOI: | 10.1177/10775463211025336 |