Never landing drone: Autonomous soaring of a unmanned aerial vehicle in front of a moving obstacle
Increasing endurance is a major challenge for battery-powered aerial vehicles. A method is presented which makes use of an updraft around obstacles to decrease the power consumption of a fixed-wing unmanned aerial vehicle. A soaring flight controller has been developed that can autonomously soar whi...
Saved in:
Published in: | International journal of micro air vehicles Vol. 13 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London, England
SAGE Publications
01-12-2021
Sage Publications Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Increasing endurance is a major challenge for battery-powered aerial vehicles. A method is presented which makes use of an updraft around obstacles to decrease the power consumption of a fixed-wing unmanned aerial vehicle. A soaring flight controller has been developed that can autonomously soar while the unmanned aerial vehicle keeps its relative position to that of a moving object. Multiple simulations have been performed to analyse the limitations of the soaring controller under different conditions. The effect of a change in wind velocity and updraft has been analysed. The simulations showed that an increase in updraft decreases the energy consumption of the flight controller. An increase in wind velocity results in a higher updraft requirement, while a decrease in the wind velocity requires less updraft. The simulations achieved sustained flight at 0% throttle. The controller has been validated experimentally using the updraft generated by a moving ship. The practical, autonomous tests reduced the average throttle down to 4.5% in front of a ship. The method presented in this study achieved successful hovering flight using an energy control module for longitudinal positioning. |
---|---|
ISSN: | 1756-8293 1756-8307 |
DOI: | 10.1177/17568293211060500 |