Improved Laser Scribing of Transparent Conductive Oxide for Fabrication of Thin-Film Solar Module

Nonuniform thickness of the front transparent conductive oxide (TCO) used for fabrication of thin-film solar module (TFSM) based on micromorphic technology affects P1 laser scribing (P1 scribing on the TCO front layer). A method for improvement of the thickness uniformity of the front TCO using modi...

Full description

Saved in:
Bibliographic Details
Published in:Technical physics Vol. 63; no. 4; pp. 557 - 562
Main Authors: Egorov, F. S., Kukin, A. V., Terukov, E. I., Titov, A. S.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-04-2018
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonuniform thickness of the front transparent conductive oxide (TCO) used for fabrication of thin-film solar module (TFSM) based on micromorphic technology affects P1 laser scribing (P1 scribing on the TCO front layer). A method for improvement of the thickness uniformity of the front TCO using modification of the existing system for gas supply of the LPCVD (TCO1200) vacuum setup with the aid of gasdistributing tubes is proposed. The thickness nonuniformity of the deposition procedure is decreased from 15.2 to 11.4% to improve uniformity of the resistance of the front TCO and light-scattering factor of TFSM. In addition, the number of P1 laser scribes with inadmissible resistance of insulation (less than 2 MΩ) is decreased by a factor of 7. A decrease in the amount of melt at the P1 scribe edges leads to an increase in the TFSM shunting resistance by 56 Ω. The TFSM output power is increased by 0.4 W due to improvement of parameters of the front TCO related to application of gas-distributing tubes.
ISSN:1063-7842
1090-6525
DOI:10.1134/S1063784218040102