Modelling and simulation of tow-drop effects arising from the manufacturing of steered-fibre composites

The introduction of Variable-Stiffness Laminates requires not only the use of advanced numerical simulation tools but also better understanding of manufacturing induced effects. These computational tools can give beneficial insight that will lead to an effective reduction of test campaigns as well a...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Vol. 93; pp. 59 - 71
Main Authors: Falcó, O., Lopes, C.S., Naya, F., Sket, F., Maimí, P., Mayugo, J.A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-02-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The introduction of Variable-Stiffness Laminates requires not only the use of advanced numerical simulation tools but also better understanding of manufacturing induced effects. These computational tools can give beneficial insight that will lead to an effective reduction of test campaigns as well as to increase design possibilities. This paper presents a virtual testing approach to study the influence of tow-drop effects, generated in the manufacturing of steered-fibre composites, by means of nonlinear finite element analyses within the framework of fracture and damage mechanics. X-ray computed tomography was used to characterise the embedded resin-rich areas. Both the progressive failure mechanisms and the ultimate failure loads can be predicted with high realism when compared with experimental observations. In addition, the differences of the tow-drop effects on plain and notched laminates can also be predicted accurately.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2016.11.015