A direct BEM to model the temperature of gradient coils

The temperature of the gradient coils is an important issue in the development of MRI scanners. Gradient coil performance must be maximised within temperature limits imposed by safety and system requirements. Here we present a model that determines the temperature distribution in gradient coils desi...

Full description

Saved in:
Bibliographic Details
Published in:Engineering analysis with boundary elements Vol. 59; pp. 159 - 165
Main Authors: Sánchez, Clemente Cobos, Rodriguez, Jose María Guerrero, Olozábal, Ángel Quirós, Poole, Michael
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-10-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The temperature of the gradient coils is an important issue in the development of MRI scanners. Gradient coil performance must be maximised within temperature limits imposed by safety and system requirements. Here we present a model that determines the temperature distribution in gradient coils designed using an inverse boundary element method (IBEM). This forward approach is derived by applying a constant boundary element method (BEM) on a steady-state approximation of the heat equation and combined with the stream function associated to an electric current density. It can be used to estimate the temperature distribution, as well as, the location and temperature of hot spots in gradient coils of arbitrary shape. Several examples of the applicability of the proposed BEM model on different coil geometries and thermal characteristics are presented. In order to validate the method, a small prototype X-gradient coil was built and tested, and the temperature distribution experimentally measured. It was found to be in a good agreement to the temperature distribution simulated by the proposed numerical approach with a suitable choice of the thermal properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0955-7997
1873-197X
DOI:10.1016/j.enganabound.2015.06.004