Mercury isotope signatures in sediments and marine organisms as tracers of historical industrial pollution
Isotopic composition of mercury (Hg) in marine organisms and sediment cores was used to identify sources and reconstruct historical trends of contamination in the coastal-marine area of Rosignano Solvay (Italy), affected by Hg pollution from a chlor-alkali plant on the near land. Sediments show a wi...
Saved in:
Published in: | Chemosphere (Oxford) Vol. 258; p. 127435 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-11-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isotopic composition of mercury (Hg) in marine organisms and sediment cores was used to identify sources and reconstruct historical trends of contamination in the coastal-marine area of Rosignano Solvay (Italy), affected by Hg pollution from a chlor-alkali plant on the near land. Sediments show a wide range of Hg concentration and Hg isotope signatures. Particularly, coupled Hg concentration and δ202Hg values trace inputs from different sources. The two depth-profiles clearly indicate three distinct periods: “pre-industrial” (before 1941), “industrial” (between 1941 and 2007) and “post-industrial” (after 2007) ages. This is also corroborated by sediment chronology, using 210Pb dating method, validated through 137Cs. Marine organisms are characterized by Hg isotope signatures comparable to “post-industrial” surface sediments. Notably, specimens of Mullus spp. evidence isotope composition comparable to the “industrial” sediments, thus suggesting a still active role of those sediments as source of Hg for the benthic fish compartment. The small amount of MIF and the Δ199Hg/Δ201Hg ratio recorded in organisms are reasonably consistent with limited processes of MMHg demethylation in the water column.
[Display omitted]
•The Hg isotope composition in marine organisms and core sediments was explored.•Sediments chronology was determined by 210Pb dating method.•Historical trend in Hg contaminated sediments was reconstructed.•Benthic organisms and surface sediments have similar isotopic composition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.127435 |