An exploration of urban air health navigation system based on dynamic exposure risk forecast of ambient PM2.5

[Display omitted] •UAHNS was established based on dynamic exposure risk forecast of PM2.5.•A trained XGBoost model performed well achieving at least 0.90 of R2.•A real-time least PM2.5 exposure route planning was realized at user-level.•A testbed with UAHNS applications successfully ran in the Wuhan...

Full description

Saved in:
Bibliographic Details
Published in:Environment international Vol. 190; p. 108793
Main Authors: Jiang, Pei, Gao, Chang, Zhao, Junrui, Li, Fei, Ou, Changhong, Zhang, Tao, Huang, Sheng
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01-08-2024
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •UAHNS was established based on dynamic exposure risk forecast of PM2.5.•A trained XGBoost model performed well achieving at least 0.90 of R2.•A real-time least PM2.5 exposure route planning was realized at user-level.•A testbed with UAHNS applications successfully ran in the Wuhan city.•UAHNS was useful to raise cognition of exposure risk at user/administrator level. Under international advocacy for a low-carbon and healthy lifestyle, ambient PM2.5 pollution poses a dilemma for urban residents who wish to engage in outdoor exercise and adopt active low-carbon commuting. In this study, an Urban Air Health Navigation System (UAHNS) was designed and proposed to assist users by recommending routes with the least PM2.5 exposure and dynamically issuing early risk warnings based on topologized digital maps, an application programming interface (API), an eXtreme Gradient Boosting (XGBoost) model, and two-step spatial interpolation. A test of the UAHNS’s functions and applications was carried out in Wuhan city. The results showed that, compared with trained random forest (RF), LightGBM, Adaboost models, etc., the XGBoost model performed better, with an R2 exceeding 0.90 and an RMSE of approximately 15.74 μg/m3, based on data from national air and meteorological monitoring stations. Further, the two-step spatial interpolation model was adopted to dynamically generate pollution distribution at a spatial resolution of 300 m*300 m. Then, an exposure comparison was performed under randomly selected commuting routes and times in Wuhan, showing the recommended routes for lower PM2.5 exposure made effectively help. And the route difference ratios of about 14.9 % and 16.9 % for riding and walking, respectively. Finally, the UAHNS platform was integrally realized for Wuhan, consisting of a real-time PM2.5 query, a one-hour PM2.5 prediction function at any location, health navigation on city map, and a personalized health information query.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0160-4120
1873-6750
1873-6750
DOI:10.1016/j.envint.2024.108793