Real-Time Continuous Phoneme Recognition System Using Class-Dependent Tied-Mixture HMM With HBT Structure for Speech-Driven Lip-Sync
This work describes a real-time lip-sync method using which an avatar's lip shape is synchronized with the corresponding speech signal. Phoneme recognition is generally regarded as an important task in the operation of a real-time lip-sync system. In this work, the use of the Head-Body-Tail (HB...
Saved in:
Published in: | IEEE transactions on multimedia Vol. 10; no. 7; pp. 1299 - 1306 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-11-2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work describes a real-time lip-sync method using which an avatar's lip shape is synchronized with the corresponding speech signal. Phoneme recognition is generally regarded as an important task in the operation of a real-time lip-sync system. In this work, the use of the Head-Body-Tail (HBT) model is proposed for the purpose of more efficiently recognizing phonemes which are variously uttered due to co-articulation effects. The HBT model effectively deals with the transition parts of context-dependent models for small-sized vocabulary tasks. These models provide better recognition performance than general context-dependent or context-independent models for the task of digit or vowel recognition. Moreover, each phoneme is categorized into one among four classes and the class-dependent codebook is generated to further improve the performance. Additionally, for the clear representation of the context dependency information in the transient parts, some Gaussians are excluded from class-dependent codebook. The proposed method leads to a lip-sync system that performs at a level that is similar to previous designs based on HBT and continuous hidden Markov models (CHMMs). However, our method reduces the number of model parameters by one-third and enables real-time operation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2008.2004908 |