New bounds for n4( k, d) and classification of some optimal codes over GF(4)

Let n 4( k, d) be the minimum length of a linear [ n, k, d] code over GF(4) for given values of k and d. For codes of dimension five, we compute the exact values of n 4(5, d) for 75 previously open cases. Additionally, we show that n 4(6,14)=24, n 4(7,9)=18, and n 4(7,10)=20. Moreover, we classify o...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics Vol. 281; no. 1; pp. 43 - 66
Main Authors: Bouyukliev, Iliya, Grassl, Markus, Varbanov, Zlatko
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-04-2004
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let n 4( k, d) be the minimum length of a linear [ n, k, d] code over GF(4) for given values of k and d. For codes of dimension five, we compute the exact values of n 4(5, d) for 75 previously open cases. Additionally, we show that n 4(6,14)=24, n 4(7,9)=18, and n 4(7,10)=20. Moreover, we classify optimal quaternary codes for some values of n and k.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2003.11.003