New bounds for n4( k, d) and classification of some optimal codes over GF(4)
Let n 4( k, d) be the minimum length of a linear [ n, k, d] code over GF(4) for given values of k and d. For codes of dimension five, we compute the exact values of n 4(5, d) for 75 previously open cases. Additionally, we show that n 4(6,14)=24, n 4(7,9)=18, and n 4(7,10)=20. Moreover, we classify o...
Saved in:
Published in: | Discrete mathematics Vol. 281; no. 1; pp. 43 - 66 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-04-2004
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
n
4(
k,
d) be the minimum length of a linear [
n,
k,
d] code over GF(4) for given values of
k and
d. For codes of dimension five, we compute the exact values of
n
4(5,
d) for 75 previously open cases. Additionally, we show that
n
4(6,14)=24,
n
4(7,9)=18, and
n
4(7,10)=20. Moreover, we classify optimal quaternary codes for some values of
n and
k. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2003.11.003 |