General formalism for singly thermostated Hamiltonian dynamics

A general formalism is developed for constructing modified Hamiltonian dynamical systems which preserve a canonical equilibrium distribution by adding a time evolution equation for a single additional thermostat variable. When such systems are ergodic, canonical ensemble averages can be computed as...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 92; no. 5; p. 052138
Main Author: Ramshaw, John D
Format: Journal Article
Language:English
Published: United States 01-11-2015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A general formalism is developed for constructing modified Hamiltonian dynamical systems which preserve a canonical equilibrium distribution by adding a time evolution equation for a single additional thermostat variable. When such systems are ergodic, canonical ensemble averages can be computed as dynamical time averages over a single trajectory. Systems of this type were unknown until their recent discovery by Hoover and colleagues. The present formalism should facilitate the discovery, construction, and classification of other such systems by encompassing a wide class of them within a single unified framework. This formalism includes both canonical and generalized Hamiltonian systems in a state space of arbitrary dimensionality (either even or odd) and therefore encompasses both few- and many-particle systems. Particular attention is devoted to the physical motivation and interpretation of the formalism, which largely determine its structure. An analogy to stochastic thermostats and fluctuation-dissipation theorems is briefly discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.92.052138