Scholte-to-Rayleigh Conversion and Other Effects in Range-Dependent Elastic Media

The parabolic equation method provides an excellent combination of accuracy and efficiency for range-dependent ocean-acoustics and seismology problems. This approach is highly developed for problems in which the ocean bottom can be modeled as a fluid. For the elastic case, there remain accuracy limi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering Vol. 32; no. 3; pp. 620 - 625
Main Authors: Outing, D.A., Siegmann, W.L., Collins, M.D.
Format: Journal Article
Language:English
Published: New York IEEE 01-07-2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The parabolic equation method provides an excellent combination of accuracy and efficiency for range-dependent ocean-acoustics and seismology problems. This approach is highly developed for problems in which the ocean bottom can be modeled as a fluid. For the elastic case, there remain accuracy limitations for problems involving sloping interfaces. Progress on this problem is achieved by improving and benchmarking the mapping solution. This approach is extended to handle multiple solid layers and propagation between sea and land. It is applied to new types of problems, such as the propagation of a Scholte wave up a sloping ocean bottom and conversion to a Rayleigh wave on land. Although the available benchmark solutions are limited, the results indicate that the mapping solution should be accurate for a large class of problems when slopes are small and that this assumption can be relaxed by applying a simple correction.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0364-9059
1558-1691
DOI:10.1109/JOE.2007.902785