Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications
Focused ultrasound phased array systems have attracted increased attention for brain therapy applications. However, such systems currently lack a direct and real-time method to intraoperatively monitor ultrasound pressure distribution for securing treatment. This study proposes a dual-mode ultrasoun...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 65; no. 10; pp. 1756 - 1767 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-10-2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Focused ultrasound phased array systems have attracted increased attention for brain therapy applications. However, such systems currently lack a direct and real-time method to intraoperatively monitor ultrasound pressure distribution for securing treatment. This study proposes a dual-mode ultrasound phased array system design to support transmit/receive operations for concurrent ultrasound exposure and backscattered focal beam reconstruction through a spherically focused ultrasound array. A 256-channel ultrasound transmission system was used to transmit focused ultrasonic energy (full 256 channels), with an extended implementation of multiple-channel receiving function (up to 64 channels) using the same 256-channel ultrasound array. A coherent backscatter-received beam formation algorithm was implemented to map the point spread function (PSF) and focal beam distribution under a free-field/transcranial environment setup, with the backscattering generated from a strong scatterer (a point reflector or a microbubble-perfused tube) or a weakly scattered tissue-mimicking graphite phantom. Our results showed that PSF and focal beam can be successfully reconstructed and visualized in free-field conditions and can also be transcranially reconstructed following skull-induced aberration correction. In vivo experiments were conducted to demonstrate its capability to preoperatively and semiquantitatively map a focal beam to guide blood-brain barrier opening. The proposed system may have potential for real-time guidance of ultrasound brain intervention, and may facilitate the design of a dual-mode ultrasound phased array for brain therapeutic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2018.2855181 |