The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches

Abstract The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Alth...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 52; no. 16; pp. 9710 - 9726
Main Authors: Brischigliaro, Michele, Krüger, Annika, Moran, J Conor, Antonicka, Hana, Ahn, Ahram, Shoubridge, Eric A, Rorbach, Joanna, Barrientos, Antoni
Format: Journal Article
Language:English
Published: England Oxford University Press 09-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction. Graphical Abstract Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first two authors should be regarded as Joint First Authors.
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/gkae645