Determination of Aluminum, Chromium, and Barium Concentrations in Infant Formula Marketed in Lebanon

Infant formula is a major nutritional component for many infants and toddlers. However, the presence of contaminants, such as toxic metals, may pose increased health risks to infants. An investigation of the total concentrations of the metals aluminum (Al), barium (Ba), and chromium (Cr) in infant f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food protection Vol. 83; no. 10; p. 1738
Main Authors: Elaridi, Jomana, Dimassi, Hani, Estephan, Maria, Hassan, Hussein F
Format: Journal Article
Language:English
Published: United States 01-10-2020
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Infant formula is a major nutritional component for many infants and toddlers. However, the presence of contaminants, such as toxic metals, may pose increased health risks to infants. An investigation of the total concentrations of the metals aluminum (Al), barium (Ba), and chromium (Cr) in infant formulae marketed in Lebanon was performed. Powdered dairy and nondairy infant formula samples were collected from all commercially available brands (n = 39) in the Lebanese market on two production dates (78 samples in total) and analyzed for these three metals with inductively coupled plasma mass spectrometry. All brands contained detectable concentrations of Al and Ba, Cr was detected in 95% of brands. Mean (±standard deviation) concentrations of the metals were estimated as 1.54 ± 1.43 (Al), 0.256 ± 0.593 (Ba), and 0.168 ± 0.143 (Cr) (μg/g). The concentration ranges in the powdered formula were 0.080 to 7.93 (Al), 0.038 to 5.35 (Ba), and 0.041 to 0.348 (Cr) μg/g. A significant difference in the mean concentrations of Al, Ba, and Cr for the two production dates of a single brand was observed in 92, 59, and 83% of samples, respectively. The mean concentration of Al in the soy-based formula was significantly higher than that of aluminum in milk-based and corn-based formulas (P = 0.018). Cr concentrations in the continuation special formulations were significantly higher than those in the beginner formulations (P = 0.008). Our study provides the first publicly available information on metal contamination in infant formulas in Lebanon and reveals the need for frequent monitoring and surveillance of these products intended for infant consumption.
ISSN:1944-9097
DOI:10.4315/JFP-20-003