A monolithically integrated 190-GHz SiGe push-push oscillator
In this letter, we present a fully monolithically integrated G-band push-push oscillator. The device is fabricated in a production-near SiGe:C bipolar technology. The transistors used in this work show a maximum transit frequency f/sub T/= 200GHz and a maximum frequency of oscillation fmax= 275GHz....
Saved in:
Published in: | IEEE microwave and wireless components letters Vol. 15; no. 12; pp. 862 - 864 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-12-2005
Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this letter, we present a fully monolithically integrated G-band push-push oscillator. The device is fabricated in a production-near SiGe:C bipolar technology. The transistors used in this work show a maximum transit frequency f/sub T/= 200GHz and a maximum frequency of oscillation fmax= 275GHz. The passive circuitry is realized by integrated transmission-line components, metal-insulator-metal (MIM)-capacitors and TaN resistors. The frequency of the output signal can be tuned between 183.3GHz and 190.5GHz, the maximum output power of the oscillator is -4.5dBm and the measured minimum single sideband phase noise is -73dBc/Hz at 1-MHz offset frequency. This represents the highest output frequency for oscillators using heterojunction bipolar transistor technology and published up to now. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1531-1309 1558-1764 |
DOI: | 10.1109/LMWC.2005.859996 |