Finite-Time Synchronization of Complex-Valued Memristive-Based Neural Networks via Hybrid Control
The finite-time synchronization problem is investigated for the master-slave complex-valued memristive neural networks in this article. A novel Lyapunov-function based finite-time stability criterion with impulsive effects is proposed and utilized to design the decentralized finite-time synchronizat...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems Vol. 33; no. 8; pp. 3938 - 3947 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-08-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The finite-time synchronization problem is investigated for the master-slave complex-valued memristive neural networks in this article. A novel Lyapunov-function based finite-time stability criterion with impulsive effects is proposed and utilized to design the decentralized finite-time synchronization controller. Not only the settling time but also the attractive domain with respect to the impulsive gain and average impulsive interval, as well as initial values is derived according to the sufficient synchronization condition. Two examples are outlined to illustrate the validity of our hybrid control strategy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3054967 |